GIFT Faculty
Ning Wen
Professor, Global Institute of Future Technology, Shanghai Jiao Tong University
Ph.D., Wayne State University
Office Location :Global Institute of Future Technology, SJTU
Tel :021-54741175
Email :al2600@qq.com
Education

2010,Wayne State University,Medical Physics,Ph.D

2006,Wayne State University,Radiological Physics,M.S

2002,Lanzhou University,Physics,B.S

Work Experience

2022-Pres.,SJTU-Ruijin-UIH Institute for Medical Imaging Technology,Ruijin Hospital, Shanghai Jiaotong University School of Medicine,Research Scientist

2022-Pres.,Global Institute of Future Technology, Shanghai Jiaotong University,Professor

2022-Pres.,Shanghai United Imaging Healthcare Co.,Chief Scientific Officer

2021-2021,Henry Ford Health System, Department of Radiation Oncology, Translational Research,Director

2021-2021,Wayne State University, Department of Oncology,Adjunct Professor

2017-2021,Wayne State University, Department of Oncology,Adjunct Associate Professor

2015-2021,Henry Ford Health System, Department of Radiation Oncology,Clinical Physics,Director

Research Fields

Multi-model cancer data integration

Development of machine learning models for cancer diagnosis, prognosis, and adaptive radiotherapy

MR guided radiotherapy

Stereotactic radiotherapy

Honors and Awards

2021 Fellow, American Association of Physicists in Medicine

Professional Service

Medical Physics, Associate Editor

2020-Pres: Member, Physics Committee, The Radiosurgery Society

2020-Pres: Member, ASTRO Research Grants Evaluation Subcommittee

2020-Pres: Member, AAPM Task-Group 362 for Multi-Lesion SRS

2021: President, AAPM The Great Lakes Chapter

2019-Pres: Member, ASTRO, Science Education and Program Development Subcommittee

Selected Publications (10 selected in last 3 years)

L. Xu, S. Zhu, N. Wen, “Deep Reinforcement Learning and Its Applications in Medical Imaging and Radiation Therapy: A Survey”, Phy. Med. Biol. 67 (2022)

S. Pati et al, “Federated Learning Enables Big Data for Rare Cancer Boundary Detection”, Nat. Commun. 13 (2022)

I. Xhaferllari, J. Kim, R. Liyanage, C. Liu, D. Du, A. Doemer, I.J. Chetty, N. Wen “Clinical Utility of Gafchromic Film in an MRI-Guided Linear Accelerator, Radiation Oncology 16 (2021)

B. Janic, S. Brown, R. Neff, F. Liu, G. Mao, Y Chen, L. Jackson, I. J. Chetty, B. Movsas, N. Wen, “Therapeutic Enhancement of Radiation and Immunomodulation by Gold Nanoparticles in Triple Negative Breast Cancer”, Cancer Biology & Therapy, 2021, Vol. 22, NO. 2, 124-135

E. Carver, Z. Dai, E. Liang, J. Snyder, N. Wen, “Improvement of Multiparametric MR Image Segmentation by Augmenting the Data with Generative Adversarial Networks for Glioma Patients”, Front. Comput. Neurosci., 2020 DOI:10.3389/fncom.2020.495075

H. Bagher-Ebadian, B. Janic, C. Liu, M. Pantelic, D. Hearshen, M. Elshaikh, B. Movsas, I.J. Chetty, N. Wen, “Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis”, Front. Oncol., 26, 2019, doi.org/10.3389/fonc.2019.01313

J. Lee, E. Carver, A. Feldman, M. Pantelic, M. Elshaikh, N. Wen, “Volumetric and Voxel-Wise Analysis of Dominant Intraprostatic Lesions on Multiparametric MRI”, Front. Oncol. 9:616. doi: 10.3389/fonc.2019.00616

Z. Dai, E. Carver, C. Liu, J. Lee, A. Feldman, W. Zong, M. Pantelic, M. Elshaikh, N. Wen, “Segmentation of the Prostatic Gland and the Intraprostatic Lesions on Multiparametic MRI Using Mask-RCNN”, Adv Radiation Oncology, 5 473-81 (2020), https://doi.org/10.1016/j.adro.2020.01.005

W. Zong, J. Lee, C. Liu, E. Carver, A. Feldman, B. Janic, M. Elshaikh, M. Pantellic, D. Hearshen, I. J. Chetty, B. Movsas, N. Wen, “A Deep Dive into Understanding Tumor Foci Classification using Multiparametric MRI Based on Convolutional Neural Network”, Med. Phys. 2019, https://doi.org/10.1002/mp.14255

C Liu, S Gardner, N. Wen, M. Elshaikh, F. Siddiqui, B. Movsas, I.J. Chetty, “Automatic segmentation of the prostate on CT images using deep neural networks (DNN)”, Int. J. Radiat. Oncol. Biol. Phys. 104 924-32 (2019) https://doi.org/10.1016/j.ijrobp.2019.03.017

Course Taught (Recent 5 Years)

Clinical Radiation Physics

Radionuclide Physics